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Abstract. A mixture of light and heavy atoms is considered. We study the kinetics of the light atoms,
scattered by the heavy ones, the latter undergoing slow diffusive motion. In three-dimensional space we
claim the existence of a crossover region (in energy), which separates the states of the light atoms with
fast diffusion and the states with slow diffusion; the latter is determined by the dephasing time. For the
two dimensional case we have a transition between weak localization, observed when the dephasing length
is less than the localization length (calculated for static scatterers), and strong localization observed in the
opposite case.

PACS. 72.15.Rn Localization effects (Anderson or weak localization)

Mixtures of different species of cold atoms present an in-
teresting field of many particle physics. Two or more dif-
ferent types of atoms can be mixed, where one type of
atoms can be relatively light (e.g. 6Li), and the other type
is heavy (e.g. 87Rb). Quantum tunneling of light atoms
is a phenomenon, interesting both from an experimental
and theoretical point of view. The heavy atoms serve as
slow moving scatterers for the light atoms. Lately, it was
realized that ultracold atomic gases appear very conve-
nient for experimental studies of Anderson localization of
the light atoms, both for the case of Bose-Einstein con-
densates, and for fermionic gases [1–11].

Kinetics of classical particles in a disordered medium
can be described by the Boltzmann equation. The most
drastic manifestation of the difference between the kinetics
of classical particles and that of quantum ones is Anderson
localization. It is well known that for d = 1 and d = 2,
where d is the dimensionality of space, all the states are
localized, and for d = 3 there exists a mobility edge Ec,
the energy which separates the states with finite diffusion
coefficient and states with the diffusion coefficient being
exactly equal to zero (For reviews, see e.g. Refs. [12–14]).
All this is true provided the disorder is static. A natural
question arises: what happens with this picture when the
scatterers slowly move?

To answer this question we need some quantitative the-
ory of localization. As such we will use the self-consistent
localization theory by Vollhard and Wölfle [15]. Of crucial
importance in the above mentioned theory are maximally
crossed diagrams (the sum of all such diagrams is called
the Cooperon) for the two-particle Green function. The
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calculations of these diagrams for the case of moving scat-
terers were done in the paper by Golubentsev [16].

One should notice that we consider the heavy atoms
as classical objects whose diffusive motion is not affected
by localization effects. On the other hand, we consider the
light atoms as quantum objects. Thus the temperature of
the atom gases should satisfy the inequalities [17]

�
2

M
N2/d � T � �

2

m
n2/d, (1)

where M and N are the mass and concentration of heavy
atoms respectively, m and n are the mass and concentra-
tion of light atoms and T is the temperature. The large
ratio between the masses of the two types of atoms con-
sidered is crucial for the applicability of the methods used
in this work also because following reference [16], we shall
ignore the change of the energy of the light atoms as a
result of a scattering by a heavy one.

In the first part of the present paper we reproduce
the results by Golubentsev (trivially generalized for the
arbitrary dimensionality of space). In the second part we
use the results for the Cooperon as an input for the self-
consistent localization theory, which we modify to take
into account the slow motion of scatterers. In the third
part we discus the results obtained.

The quantum particles are scattered by the potential

V (r, t) = V
∑

a

δ (r − ra(t)) . (2)

Define the correlator

K(r − r′, t − t′) = 〈V (r, t)V (r′, t′)〉. (3)
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To leading order in the density of scatterers we have for
the Fourier component of the correlator

K(q, t) = V 2

〈∫
exp {(iq(r − r′)}

× drdr′
∑

a

δ (r− ra(t))
∑

a′
δ (r′ − r′a′(0))

〉
=

V 2
∑

a

〈exp {iq(ra(t) − ra(0))}〉 = nV 2f(q, t), (4)

where n is the scatterer density. We consider the case when
the scatterers undergo slow diffusive motion. In the bal-
listic case

f(q, t) = exp
(
−q2T

2M
t2

)
, |t| � τimp, (5)

In the diffusive case

f(q, t) = exp
(
−q2Tτimp

2M
|t|

)
, |t| � τimp, (6)

where we have used the fact that

〈v2
imp〉 =

dT

M
, (7)

and τimp is the mean free time of the scatterers.
For the Cooperon we get [16]

CE(q) =
∫ ∞

0

exp
{
−D(E)q2t − 1

τ

∫ t

0

(1 − ft′)dt′
}

dt,

(8)
where E is the energy of each of the two quantum particle
lines in the Cooperon diagram, and q is the sum of their
momenta (see Fig. 1). Also

1
τ

=

⎧
⎪⎨

⎪⎩

nV 2k2/πv d = 3

nV 2k/v d = 2

nV 2/v d = 1.

(9)

We’ll assume that τ � τimp. The quantity ft is f(k) aver-
aged with respect to the iso-energetic surface. We obtain

ft =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yd

(
t2

τ2
λ

)
|t| � τimp

yd

( |t|τimp

τ2
λ

)
|t| � τimp

(10)

where

τλ =
(

2k2T

M

)−1/2

. (11)

For d = 3, y3(x) = (1 − e−x)/x [16]. For d = 2

ft =
∫

ds′

2π
f(k(s − s′), t). (12)

Fig. 1. Diagrams for the Diffuson (a) and the Cooperon (b).
Solid line is dressed quantum particle propagator, dashed line
connecting points r, t and r′, t′ corresponds to K(r − r′, t− t′).

Using the integral

1
π

∫ π

0

dθe−A(1−cos θ) = e−AI0(A), (13)

where I0 is the modified Bessel function, we obtain

y2(x) = e−x/2I0(x/2). (14)

For d = 1
y1(x) = e−x/2. (15)

Equation (8) can be easily understood if we compare di-
agrams for the Diffuson (the sum of all ladder diagrams)
and the Cooperon in Figure 1. The Diffuson does not have
any mass because of the Ward identity. In the case of the
Cooperon, the Ward identity is broken, and the differ-
ence [1 − f(t)] shows how strongly. The interaction line
which dresses the single particle propagator is given by
the static correlator, and the interaction line which con-
nects two different propagators in a ladder is given by
the dynamic correlator. The time-reversal invariance in
the system we are considering is broken due to dephas-
ing; the diffusion pole of the particle-particle propagator
disappears, although the particle-hole propagator still has
a diffusion pole, which is guaranteed by particle number
conservation. (The weak localization effects for the case
of inelastic electron-phonon scattering were discussed by
Afonin et al. [18].)

Considering the limiting cases, from equation (8) we
obtain:

(i) in the case 2k2T/M � τ/τ3
imp

CE(q) =
∫ ∞

0

exp
[−D(E)q2t − t2/τ2

ϕ(E)
]
dt, (16)

where

τϕ =
(

2M

k2T

τ

τimp

)1/2

; (17)

(ii) in the case τ/τ3
imp � 2k2T/M � 1/τ2

CE(q) =
∫ ∞

0

exp
[−D(E)q2t − t3/τ3

ϕ(E)
]
dt, (18)

where

τϕ =
(

3Mτ

k2T

)1/3

. (19)
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Thus we obtain the crucial parameter – the dephasing
time τϕ.

The results for the dephasing time (up to a numerical
factors of order one) can be understood using simple qual-
itative arguments. Consider the ballistic regime. If a single
collision leads to the quantum particle energy change δE,
the dephasing time could be obtained using equation (19)

τϕδE

√
τϕ

τ
∼ 2π, (20)

where τϕ/τ is just the number of scatterings during the
time τϕ. So in this case

1
τ3
ϕ

∼ (δE)2

τ
. (21)

If we notice that 1/τλ is the averaged quantum particle
energy change in a single scattering, δE, we immediately
regain equation (19). Equations (20) and (21) also imply
that if the scattering is quasi elastic (and slow motion of
scatterers means just that), the energy relaxation time is
much larger than the dephasing time [19]. Hence we have
the right to ignore the Doppler caused cumulative energy
shift, which otherwise would have lead to the appearance
of the Diffuson mass.

Inserting equation (18) into the self-consistent equa-
tion, for the diffusion coefficient D we obtain

D0(E)
D(E)

= 1 +
1

4π2mk

∑

q

CE(q) (22)

where D0 is the diffusion coefficient calculated in the Born
approximation

D0 =
1
d
v2τ ; (23)

v is the particles velocity, and the momentum cut-off |q| <
1/� is implied, where l = kτ/m is the mean free path. Thus
we obtain

D0

D
= 1 +

1
πmk

∫ ∞

0

dt

∫ 1/l

0

dq qd−1

× exp
[−Dq2t − g(t/τϕ)

]
, (24)

where g(x) is some function which goes to infinity when
x goes to infinity as some power of x higher than one (in
the particular case of ballistic regime g(x) = x3, and in
the diffusive regime g(x) = x2).

Introducing dimensionless variables we obtain

D0

D
= 1 +

1
π

1
(kl)d−1

∫ ∞

0

dt̃

∫ 1

0

dq̃ q̃d−1

× exp
[
−1

d

D

D0
q̃2t̃ − g(t̃τ/τϕ)

]
. (25)

Thus we have obtained an algebraic equation for D/D0,
which (equation) depends upon two parameters: τϕ/τ � 1
and kl, which can be arbitrary.

Let us start analysis of this equation with the case
d = 2. Calculating the integral with respect to q̃ we obtain

D

D0
= 1 − 1

πkl

∫ ∞

0

dt̃

t̃

[
1 − e−

Dt̃
2D0

]
e−g(t̃τ/τϕ). (26)

Let us make the assumption (which we’ll justify a poste-
riori)

Dτϕ/D0τ � 1. (27)

To calculate the integral

I(λ) =
∫ ∞

0

dt̃

t̃

[
1 − e−λt̃

]
e−g(t̃), λ � 1, (28)

let us divide the region of integration by choosing some x
satisfying 1/λ � x � 1. We obtain

I(λ) =
[∫ x

0

+
∫ ∞

x

]
dt̃

t̃

[
1 − e−λt̃

]
e−g(t̃)

=
∫ x

0

dt̃

t̃

[
1 − e−λt̃

]
+

∫ ∞

x

dt̃

t̃
e−g(t̃)

= ln(λx) − ln x = ln λ. (29)

(In Eq. (29) we have ignored all numerical factors of or-
der 1 in the argument of the logarithms.) Hence, equa-
tion (26) can be presented in the form

D

D0
= 1 − 1

πkl
ln

(
Dτϕ

D0τ

)
. (30)

Solution of equation (30) is particularly simple in two
limiting cases: lϕ � ξ and lϕ � ξ, where lϕ = vτϕ is
the dephasing length, and ξ = le

πkl
2 is the localization

length [14]. In the former case we obtain just weak local-
ization corrections

D

D0
= 1 − 1

πkl
ln

τϕ

τ
, (31)

and in the latter case

D =
ξ2

τϕ
. (32)

We see that in both cases the assumption (27) is satisfied.
Results of a numerical solution of equation (26) for

g(x) = x3, g(x) = x2 and g(x) = x are presented in Fig-
ure 2. One can see that the curves for D/D) are practically
indistinguishable. Thus the exact form of the function g(x)
is not important. All the relevant information is contained
in the dephasing time, determined by the parameter τϕ.

Notice, that the quantum diffusion of particles scat-
tered by the slow moving scatterers turns out to be sim-
ilar to the case when there are two separate scattering
mechanisms: strong elastic scattering causing relaxation
of momentum, and weak inelastic scattering due to say,
phonons, causing dephasing (except for the definition of
τϕ). Strong dependence of the diffusion coefficient for
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Fig. 2. The results of numerical solution of equation (26)
(τϕ/τ = 10) for g(x) = x2 (solid line), g(x) = x3 (dashed
line), and g(x) = x (dots).

d = 2 upon the ratio of the dephasing and the localization
length (for the case of two scattering mechanisms) was
thoroughly discussed in references [6,20–22].

As it was noticed by Gogolin and Zimanyi [20], there
is a lower bound of temperature for the validity of equa-
tion (32). At low enough temperatures variable range
hopping, which is of course not taken into account by
the self-consistent localization theory is the main diffu-
sion mechanism. So equation (24) is valid, provided

T � ∆E, (33)

where ∆E is the average energy difference between neigh-
boring localized states. Equation (33) can be presented as

T � 1
ml2

e−πkl. (34)

On the other hand, inequality lϕ � ξ after substitution of
equation (17) gives

T � M

m

τ

τimp

1
ml2

e−πkl, (35)

and after substitution of equation (19) gives

T � M

m

1
ml2

e−πkl. (36)

We again see the importance of the large parameter M/m.
In fact, equation (32) is valid both for d = 1 and

d = 3 (in the latter case, provided we have localization
in the absence of dephasing). Taking into account the
numerical results obtained for d = 2, for the purpose
of semi-quantitative analysis we may approximate equa-
tion (24) by

D0

D
= 1 +

1
πmk

∫ ∞

0

dt

∫ 1/l

0

dq qd−1

× exp
[−Dq2t − t/τϕ

]
. (37)

Calculating the integral with respect to t we obtain equa-
tion (37) in the form

D

D0
= 1 − d

π(kl)d−1

∫ 1

0

dq̃q̃d−1

q̃2 + l2

Dτϕ

. (38)

For d = 2 we obtain

D

D0
= 1 − 1

πkl
ln

[
Dτϕ

l2
+ 1

]
, (39)

which in our approximation coincides with equation (30).
For d = 1 we obtain from equation (37)

D

D0
= 1 − 1

π

√
Dτϕ

l
tan−1

√
Dτϕ

l
. (40)

Again ignoring numerical multipliers of order 1 we obtain

D = D0
τ

τϕ
. (41)

If we take into account that for d = 1 we have ξ ∼ l, we
see that equation (41) is equivalent to equation (32). One
must admit, however, that for d = 1 the self-consistent lo-
calization theory should be handled with care. In addition
interaction between quantum particles, not considered in
the present paper, may strongly influence the localization
processes [23].

For d = 3 from equation (37) we obtain

D

D0
= 1 − 3

π(kl)2

[
1 − l√

Dτϕ

tan−1

√
Dτϕ

l

]
. (42)

One can see, that for d = 3 (similar to the case d = 2)
equation (32) ceases to be valid when the localization
length ξ becomes large enough, which happens when the
parameter kl approaches the critical value

√
3/π from

below. In fact, in this region equation (42) can be pre-
sented as

D

D0
= 2

√
3π(λc − λ) +

l√
Dτϕ

tan−1

√
Dτϕ

l
, (43)

where λ = 1/πkl. and λc = 1/
√

3π. After assuming that
the term 2

√
3π(λc −λ) can be ignored with respect to the

second term in the rhs of equation (43), and that Dτϕ/l �
1 we obtain

D =
l2

τ2/3τ
1/3
ϕ

. (44)

Now checking the assumptions and taking into account
that in the critical region [14] ξ = l/|λ − λc|, we see that
equation (44) is valid, provided

ξ > l2/3l1/3
ϕ . (45)

The results of numerical solution of equation (42) are pre-
sented in Figure 3.

Notice that in accordance with references [20,21] the
dephasing time dependence of the diffusion coefficient can
be obtained from its frequency dependence by replacing ω
by iτϕ. Equation (24) in the absence of dephasing but for
finite frequency is [14]

D0

D(ω)
= 1 +

1
πmk

∫ ∞

0

dt

∫ 1/l

0

dq qd−1

× exp
[−D(ω)q2t + iωt)

]
. (46)
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Fig. 3. The results of numerical solution of equation (42) for
τϕ/τ = 10 (dashed line), τϕ/τ = 100 (dot-dashed line), and
τϕ/τ = 1000 (solid line).

The localization length is defined [14] as

ξ = lim
ω→0

√
D(ω)
−iω

. (47)

Analyzing the solution qualitatively, we may substitute
1/τϕ for −iω into the definition of the localization
length (46) and obtain equation (32).

Conclusions

We considered the influence of slow random motion of ran-
dom scatterers on the localization of quantum particles. It
turned out that whenever the states of the quantum par-
ticles were localized, under the assumption, that the same
scatterers are static, taking the motion of the scatterers
into account leads to a finite value of the diffusion coeffi-
cient. In particular, for the three dimensional case, there
exists a narrow crossover region in energy space, which
separates the states with high and low diffusion coefficient,
the latter being inversely proportional to the dephasing
time (For the states with fast diffusion the dephasing is
irrelevant). Like the position of the mobility edge in the
case of static scatterers, the position of this crossover re-
gion is determined by the criterion that the mean free path
is of the order of the quantum particle wavelength. This
crossover region we call the quasi-mobility edge, and the
phenomena in general we call quasi-localization. For the
two dimensional case we have a transition between weak
localization, observed when the dephasing length is less
than the localization length (calculated for static scatter-
ers), and strong localization observed in the opposite case.

The main application of our results we see as lying in
the description of kinetics of ultracold gases. However, we
would like to mention possible application of these results
to at least one other field. In our previous publication [24],
we studied the influence of dephasing on the Anderson
localization of the electrons in magnetic semiconductors,
driven by spin fluctuations of magnetic ions. There the role
of heavy particles was played by magnons; complete spin
polarization of conduction electrons prevented magnon

emission or absorption processes, and only the processes
of electron-magnon scattering being allowed.
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